

In-host Models

Jane Heffernan MI2 Lab Centre for Disease Modelling York University

1

Immune System

- Works around the clock in thousands of different ways, largely unnoticed.
- When it fails, we notice
 - Get sick i.e. bacteria, viruses
- Also notice when it is at work
 - Splinter inflammation and pain, puss
 - Mosquito bite get a red, itchy bump
 - Infectious disease fever, runny nose, cough the immune system at work!!

Components of Immune system

- Skin primary boundary between germs and your body
 - Epidermis contains special cells that are an important early-warning component in the immune system.
 - Skin also secretes antibacterial substances- most bacteria and spores that land on the skin die quickly.
- Nose, mouth and eyes obvious entry points for germs
 - Tears and mucus contain an enzyme that breaks down the cell wall of many bacteria.
 - Saliva is also anti-bacterial.
 - Nasal passage and lungs are coated in mucus many germs not killed immediately are trapped in the mucus and soon swallowed.
 - Mast cells also line the nasal passages, throat, lungs and skin
- Once inside the body, a germ deals with the immune system at a different level. The major components of the immune system are:
 - Thymus
 - Spleen
 - Lymph system
 - Bone marrow

- White blood cells
- Antibodies
- Complement system
- Hormones

Immune System

- Each day you
 - Inhale or eat thousands of germs (bacteria and viruses).
 - Your immune system deals with all of them without a problem skin, mucous, saliva.
 - Occasionally a germ gets past the immune system and you get sick
 - Fever, runny nose, vomitting.
 - If you get better, your immune system was working.
- There are also human ailments that are caused by the immune system working in unexpected or incorrect ways that cause problems.
 - Examples:
 - Allergies immune system overreacting to certain stimuli that other people don't react to at all.
 - Diabetes caused by the immune system inappropriately attacking cells in the pancreas and destroying them.
 - Rheumatoid arthritis caused by the immune system acting inappropriately in the joints
- Finally, immune system may somtimes prevent us from doing things that would be otherwise beneficial
 - i.e. Organ transplants immune system often rejects the transplanted organ.

Bacteria and Viruses

- Your body
 - Multi-cellular organism made up of perhaps 100 trillion cells.
 - The cells in your body are fairly complicated machines have a nucleus, energy production equipment, etc.
- Bacteria
 - Single-celled organisms that are much simpler (no nucleus)
 - About 1/100th the size of a human cell (1 micrometer long)
 - Can eat and reproduce
 - One bacterium divides into two separate bacteria perhaps once every 20-30 min
 - At that rate, one bacteria can become millions in just a few hours.
- Virus
 - Not really alive virus particle is a fragment of DNA/RNA in a protective coat
 - Virus comes in contact with a cell, attaches itself to the cell wall and injects its DNA (and perhaps a few enzymes) into the cell
 - The DNA uses the machinery inside the living cell to reproduce new virus particles
 - Eventually the hijacked cell dies and bursts, freeing the new virus particles; or the viral particles may bud off of the cell so it remains alive

gure 1-8 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

- Like, the circulatory system, the lymphatic system is a network of vessels.
- Unlike the circulatory system, the lymphatic system has no "pump" located within the lymph vessels
 - Relies on bodily movement as well as nearby pulses from other vessels and organs in the body to facilitate the flow of the lymph fluid.
- I.e. if you do not move, the lymph does not move well.
- Very sedentary individuals more prone to sickness

Figure 1-3 part 2 of 4

Figure 1-3 part 2 of 4 Immunobiology, 6/e. (© Garland Science 2005)

Figure 1-3 part 3 of 4

Figure 1-3 part 3 of 4 Immunobiology, 6/e. (© Garland Science 2005)

Figure 1-3 part 4 of 4

Figure 1-3 part 4 of 4 Immunobiology, 6/e. (© Garland Science 2005)

Memory Cells

Immune System

- Innate Immunity
- Adaptive Immunity
 - Humoral immunity
 - B-cells and antibodies
 - Cell mediated immunity
 - T-cells
 - Helper and effector

- Lymphocytes
 - T produced by thymus
 - CD4
 - Helper T-cells
 - Activated by antigen presenting cells
 - Activate the rest of the immune response
 - CD8
 - Killer/effector T-cells
 - B produced in bone marrow
 - Mature in spleen
 - Plasma cells, antibodies
 - Naive, activated memory

Figure 10-1 Immunobiology, 6/e. (© Garland Science 2005)

смм

Centre de la modélisation des maladies

CDM Centre for Disease Modelling

• The course of a typical acute infection

Immunological Memory

 Protective immunity consists of preformed immune reactants and immunological memory. Understand immune system/in-host dynamics

СММ

Centre de la

CDM Centre for Disease Modelling

Adding in uncertainty

Memory Cells

- Long lived
- This can be a good thing (COVID-19, influenza, vaccination)
- This can be a bad thing (HIV...)

Virus Fitness

- Reproduction number
- Can define fitness for different virus variants
- We will also touch on this today

• Applicable to all studies of pathogen dynamics in-host

Motivated by HIV

Many extensions

science YORK

- x uninfected cells
- y infected cells
- v free virus

- λ, k production rate
- β efficacy of infection
- d_x, d_y, d_v death rates/ clearance time

Basic Model- with virus loss

$$\frac{dx}{dt} = \lambda - d_x x - \beta x v$$

$$\frac{dy}{dt} = \beta x v - d_y y$$

$$\frac{dv}{dt} = ky - d_v v - \beta x v$$

- x uninfected cells
- y infected cells
- v free virus

- λ, k production rate
- β efficacy of infection
- d_x, d_y, d_v death rates/ clearance time

Science Where is the immune system?

- x uninfected cells
- y infected cells
- v free virus

- λ, k production rate
- β efficacy of infection
- d_x, d_y, d_v death rates/ clearance time

Intro Analysis

> restart :
> with(LinearAlgebra) :
> eq1 := lambda
$$- dx \cdot x - beta \cdot x \cdot v$$
;
 $eq1 := \lambda - dx x - \beta x v$
> eq2 := beta $\cdot x \cdot v - dy \cdot y$;
 $eq2 := \beta x v - dy y$
> eq3 := $k \cdot q \cdot y - dv \cdot v - beta \cdot x \cdot v$;
 $eq3 := k \cdot q \cdot y - dv \cdot v - \beta x v$
> eq4 := $k \cdot (1 - q) \cdot y - dv \cdot w$;
 $eq4 := k (1 - q) \cdot y - dv \cdot w$;

> equil := solve({eq1 = 0, eq2 = 0, eq3 = 0, eq4 = 0}, {x, y, v, w}); equil := { $v=0, w=0, x = \frac{\lambda}{dx}, y=0$ }, { $v=-\frac{-\lambda\beta kq + \lambda\beta dy + dx dv dy}{dv dy\beta}, w = \frac{k(-\lambda\beta kq + \lambda\beta dy + dx dv dy)(-1+q)}{\beta dy(-kq + dy) dv}, x = -\frac{dv dy}{\beta(-kq + dy)}, y$ = $\frac{-\lambda\beta kq + \lambda\beta dy + dx dv dy}{\beta dy(-kq + dy)}$ }

> J := Matrix(4, 4, [[diff(eq1, x), diff(eq1, y), diff(eq1, v), diff(eq1, w)], [diff(eq2, x), diff(eq2, y), diff(eq2, v), diff(eq2, w)], [diff(eq3, x), diff(eq3, y), diff(eq3, v), diff(eq3, w)], [diff(eq4, x), diff(eq4, y), diff(eq4, v), diff(eq4, w)]]);

$$J := \begin{bmatrix} -dx - \beta v & 0 & -\beta x & 0 \\ \beta v & -dy & \beta x & 0 \\ -\beta v & k q & -dv - \beta x & 0 \\ 0 & k (1 - q) & 0 & -dy \end{bmatrix}$$

28

> $equil := solve(\{eql = 0, eq2 = 0, eq3 = 0, eq4 = 0\}, \{x, y, v, w\});$ $equil := \left\{v = 0, w = 0, x = \frac{\lambda}{dx}, y = 0\right\}, \left\{v = -\frac{-\lambda\beta k q + \lambda\beta dy + dx dv dy}{dv dy \beta}, w = -\frac{k\left(-\lambda\beta k q + \lambda\beta dy + dx dv dy\right)(-1 + q)}{\beta dy (-k q + dy) dv}, x = -\frac{dv dy}{\beta\left(-k q + dy\right)}, y$ $= \frac{-\lambda\beta k q + \lambda\beta dy + dx dv dy}{\beta dy (-k q + dy)}\right\}$

> J := Matrix(4, 4, [[diff(eq1, x), diff(eq1, y), diff(eq1, v), diff(eq1, w)], [diff(eq2, x), diff(eq2, y), diff(eq2, v), diff(eq2, w)], [diff(eq3, x), diff(eq3, y), diff(eq3, v), diff(eq3, w)], [diff(eq4, x), diff(eq4, y), diff(eq4, v), diff(eq4, w)]]);

$$J := \begin{bmatrix} -dx - \beta v & 0 & -\beta x & 0 \\ \beta v & -dy & \beta x & 0 \\ -\beta v & k q & -dv - \beta x & 0 \\ 0 & k (1 - q) & 0 & -dv \end{bmatrix}$$

29

$$= Eigenvalues(subs(\{x = x0, y = 0, v = 0, w = 0\}, J));$$

$$= eigvals := \left[\left[-dx \right],$$

$$\left[-dv \right],$$

$$\left[-\frac{1}{2} dv - \frac{1}{2} dy - \frac{1}{2} \beta x0 + \frac{1}{2} \sqrt{dv^2 - 2 dv dy + 2 dv \beta x0 + dy^2 - 2 dy \beta x0 + \beta^2 x0^2 + 4 k q \beta x0} \right],$$

$$\left[-\frac{1}{2} dv - \frac{1}{2} dy - \frac{1}{2} \beta x0 - \frac{1}{2} \sqrt{dv^2 - 2 dv dy + 2 dv \beta x0 + dy^2 - 2 dy \beta x0 + \beta^2 x0^2 + 4 k q \beta x0} \right],$$

$$\left[-\frac{1}{2} \sqrt{dv^2 - 2 dv dy + 2 dv \beta x0 + dy^2 - 2 dy \beta x0 + \beta^2 x0^2 + 4 k q \beta x0} \right]$$

$$> solve(eigvals[3] = 0, k) : R0 := \frac{k}{\frac{2}{3}};$$

$$R0 := \frac{k q \beta x0}{dy (dv + \beta x0)}$$

- Basic reproductive ratio
 - The number of secondary infections produced by an initial infective in a totally susceptible population

YORRK UNIVERSITÉ

In-host Model

Basic reproductive ratio

 The number of secondary infections produced by an initial infective in a totally susceptible population

Basic Model- with drugs

$$\frac{dx}{dt} = \lambda - d_x x - \beta (1 - \epsilon_{rt}) xv$$
$$\frac{dy}{dt} = \beta (1 - \epsilon_{rt}) xv - d_y y$$
$$\frac{dv}{dt} = kq (1 - \epsilon_p) y - d_v v - \beta xv$$
$$\frac{dw}{dt} = k(1 - q(1 - \epsilon_p)) y - d_v w$$

$$R_c = \frac{\beta(1 - \epsilon_{rt})x_0}{\beta x_0 + d_v} \frac{kq(1 - \epsilon_p)}{d_y}$$

Latently Infected Cells

34

CD4 T-cell immunity & Latently Infected Cells

Centre for Centre de la Disease Modelling

Eclipse Stage

Some time is needed between virus fusion and the budding of new virus particles

This is called the Eclipse Stage

Add one or more equations to the basic model of virus dynamics

Viral Blips ODEs, include long lived memory cells

Viral Blips ODEs, include long lived memory cells

More to consider...

with killer cells and antibodies

$$x' = \lambda - d_x x - \beta xv$$

$$y' = \beta xv - d_y y - \xi yz$$

$$v' = kqy - d_v v - \beta xv - \phi av$$

$$z' = F(x, y, v, z, a) - d_z z$$

$$a' = G(x, y, v, z, a) - d_a a$$

$$R_0 = \frac{\beta x_0}{\beta x_0 + d_v + a_0} \frac{kq}{d_y + z_0}$$

Can add in drug therapies that may excite the immune system too....

An extension

Pawelek et al (2012), Heffernan & Ciupe (2017)

Model-Bacteria

- Tuberculosis
- Macrophages

. . .

 Bacteria can replicate on their own

$$\begin{aligned} \frac{dM_{u}}{dt} &= s_{M} - \mu_{M}M_{u} - \beta M_{u}B, \\ \frac{dM_{i}}{dt} &= \beta M_{u}B - bM_{i} - \gamma M_{i}\frac{(T/M_{i})}{(T/M_{i}) + c}, \\ \frac{dB}{dt} &= \delta B \left(1 - \frac{B}{K}\right) + N_{1}bM_{i} + N_{2}\gamma M_{i}\frac{(T/M_{i})}{(T/M_{i}) + c} - \eta M_{u}B - N_{3}\beta M_{u}B, \\ \frac{dT}{dt} &= s_{T} + \frac{c_{M}M_{i}T}{e_{M}T + 1} + \frac{c_{B}BT}{e_{B}T + 1} - \mu_{T}T. \end{aligned}$$

$$\mathcal{R}_0 = \frac{\delta}{(\eta + N_3\beta)M_u^0} + \frac{N_1b + N_2\gamma}{b + \gamma}\frac{\beta}{\eta + N_3\beta}$$

Understand immune system/in-host dynamics

СММ

Centre de la

CDM Centre for Disease Modelling

In hact madal. Influanza

- (A): virions infect healthy cells (U).
- (B): virions are engulfed by Antigen Processing Cells (APC) and B-Cells, are processes and a derived peptide-antigens are expressed on MHC-II surface molecule.
- (C): Naive T-cells (Th0) interact with APC/B-cell to recognize the peptide-antigens.
- (D): Class-I cytokines (Cy1) (IL-12, IFN-g, IL-18) promote Th0 differentiate into activated Th1.
- (E): Th1 up-regualtes further production of Cy1 specially IL-2, IFN-g and TFN-b.
- (F); Positive feedback loop that enhances growth of activated Th1 by Cy1.
- (G): Class-II cytokines (Cy2) promote Th0 differentiate into activated Th2.
- (H): Activated Th2 upregulates production of Cy2.
- (I): Cy2 inhibition of growth of Cy1.
- (J): APC and B-cells gets activated upon Th0 activation.
- (K): Cy2 upregulates growth and activation of B-cells.
- (L): Activated APC/B-cells up-regulate production of Cy1 (IFN-g).
- (M): Activaated APC/B-cells recruite more virions for expression.
- (N): Activated B-cells secrete influenza-A specific antibodies.
- (O): Cy1 promotes activation of Cytotoxic T Lymphocytes (CTL*).
- (P): CTL* up-regulates production of Cy1.
- (Q): Cy1 inhibition of viral mRNA (editing).
- (R): CTL* mediated direct lysis of infected cells and virions.
- (S): B-cell secreted antibody mediated lysis of infected cells and virions.

MANY EQUATIONS, ASSUMPTIONS – PARAMETER IDENTIFIABILITY!!

More vs. More

In-host model

Farhang-Sardroodi et al., (2021) Vaccines Korosec et al., (2022) Scientific Reports Gholami et al., (2022) Math Biosci Lin, Korosec, et al., (2022) J Am Soc Microbiol

https://www.e-cep.org/journal/view.php?number=20125555450

https://www.nature.com/articles/s41564-021-00958-0

Modelling Vaccination In-Host

Modelling Infection In-Host

A) Schematic of target-cell limited model (Eq.1)

CMM

Centre de la modélisation des maladies

CDM

Centre for Disease Modelling

B) Schematic of transmission bottleneck model (Eq.2)

UNIVERSITÉ

Korosec et al., in prep

Infection & Immunity Observations

Model Fitting

- Immunity gained after infection correlates with the severity of the infection
- Immunity gained from infection and vaccination can wane over similar periods of time
- Mild infections are shorter in duration than moderate infections
- Moderate infections are shorter than severe infections
- Viral load correlates with severity of infection, and thus will affect transmissibility

Extra

- Literature
- Assumptions
- Sensitivity analysis

Analysis: Public Health Mitigation

Start

2020-03-12

2020-03-27

2020-07-01

2020-11-24

2020-06-10

2021-07-01 2021-07-28

0

Phase

2

3

2

Scale	School	Work
0	no restrictions	no restrictions
1	open with restrictions	open with restrictions
2	blended learning	most businesses closed except for some sectors
3	closed	only essential services operating

Scale	Other
0	no restrictions
1	minor restrictions on gatherings, travelling, activities
2	moderate restrictions on gatherings, travelling, activities
3	strict restrictions on gatherings, travelling, activities

Alberta-Schools					
Start	End	Phase			
2020-03-05	2020-05-14	3			
2020-05-14	2020-09-01	2			
2020-09-01	2020-11-30	1			
2020-11-30	2020-12-18	2			
2020-12-18	2021-01-11	3			
2021-01-11	2021-03-27	1			
2021-03-27	2021-04-06	3			
2021-04-06	2021-05-07	1			
2021-05-07	2021-05-25	3			
2021-05-25	2021-06-30	1			
2021-06-30	2021-07-28	3			

Alberta-Work							
Start	End	Phase					
2020-03-17	2020-03-28	1					
2020-03-28	2020-05-04	3					
2020-05-04	2020-12-13	2					
2020-12-13	2021-02-08	3					
2020-02-08	2021-05-04	2					
2021-05-04	2021-06-10	3					
2021-06-10	2021-07-01	1					
2021-07-01	2021-07-28	0					

Manitoba-Work			Manitaha Othan		
	Start 2020-03-20 2020-04-01 2020-05-04 2020-06-01	End 2020-04-01 2020-05-04 2020-06-01 2021-11-02	Phase 1 3 2 1	Manitob Start 2020-03-17 2020-03-20 2020-04-01 2020-06-01	pa-Other End 2020-03-20 2020-04-01 2020-06-01 2021-09-28
			-		

Manitoba-Schools

2020-03-23 2020-09-08

2020 00 08 2020 10 24

End

Phase

3

1

Start

Calibratian to Llaco Data

Immunity & Infection Distn^{science}

Apr-23

VORK UNIVERSITÉ

Age

Before

During

Before

During

In Relation to Omicron BA.1/1.1 Wave

Before

During

Reading

- Heffernan and Ciupe
- Wodarz and Nowak
- Perelson and Nelson

Homework Problem 1 – 10 points

- Consider the basic model of in-host infection with the virus loss term AND an eclipse stage split into 2 parts
- Draw a flow diagram
- Describe model variables and parameters
- Derive the basic reproduction number
- Find the model equilibria (fixed points)
- Show that the infected equilibrium can only exist if the basic reproduction number is greater than 1

$$\frac{dx}{dt} = \lambda - d_x x - \beta xv$$
$$\frac{de_1}{dt} = \beta xv - d_e e_1 - \alpha e_1, \qquad \frac{de_2}{dt} = \alpha e_1 - d_e e_2 - \alpha e_2$$
$$\frac{dy}{dt} = \alpha e_2 - d_y y$$
$$\frac{dv}{dt} = ky - \beta xv - d_v v$$

Homework Problem 2 – 8 points

- Again, consider the basic model of in-host infection with the virus loss term AND an eclipse stage split into 2 parts (see Homework Problem 1)
- Rewrite the model to take into consideration infectious and non-infectious virus particles. Justify the structure that you chose.
- Add an equation for antibodies. Add in the neutralization for virus particles by antibodies. Justify why you added antibodies in the structure that you chose.
- Add an equation for cytotoxic T-cells. Add in the killing of infected cells. Justify why you added CTL in the format that you chose.
- Add an equation for Interferon and add in terms that represent the effects of interferon into the model. Justify your choices.

Homework Problem 3 – 4 points

- Read
 - Heffernan, J. M., and M. J. Keeling. "An in-host model of acute infection: Measles as a case study." *Theoretical population biology* 73.1 (2008): 134-147.
 - Heffernan, J. M., and M. J. Keeling. "Implications of vaccination and waning immunity." *Proceedings of the Royal Society B: Biological Sciences* 276.1664 (2009): 2071-2080
- Comment on the utility of embedding in-host information into epidemiological models (1 page)