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COVID-19 cases reported in Newfoundland and Labrador

Pandemic preparedness needs modelling preparedness
highlighting the role of mechanistic models and the gap in supporting Canadian

small jurisdictions
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Pandemic preparedness needs modelling preparedness

1. There was high demand for modelling during the pandemic
2. Mechanistic and statistical models have different roles in pandemic decision support

3. The modelling needs of small jurisdictions can be different than the modelling needs of

large jurisdictions.

4. Building capacity in mathematical biology and statistics in Atlantic Canada



. High demand for modelling during the pandemic

Forecasting
Counterfactual scenarios
Public health communication

Quantities to inform decisions



Forecasting and scenarios
PHAC report involving McMasterPandemic

Longer-range forecast shows stronger public health measures will be
required to counter more transmissible variants of concern

12,000
With spread of
10.000 - VOCs and we
' maintain or
increase the
8,000 1 current number of
people we contact
Reported
P 6 each day
cases ’
4,000 - If VOCs are
@ controlled by
2000 reducing the
’ current number of
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0 1 each day
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Data as of March 24, 2021 The PHAC McMaster forecast is based on current estimates transmission rates fitted to reported cases. It assumes VOCs are introduced in mid-
Dec (~1 week prior to first detected case in Canada) at very low prevalence; VOCs (all VOCs known to date) are 50% more transmissible than
Note: Ensemble of output from PHAC-McMaster wild- typg, growth rate AND r'eplacement rate are negatl\:’ely correlaltled with the strength of public hefalth measures. Ii;gpé)rtéon of VOC is
. . . bt b ing ¢ i it 1 that it ch
and Simon Fraser University models ?estalar;era((!saare not taken into account mot:l: forecast. Sia rar?e::\zdgsare at https: //‘\::‘ww sfu. ca/maoggc:ﬁ;lksq/vaanaar:t simple-| sf::cnf/eagtgrsls "

Slide by Steve Walker (https://canmod.github.io/macpan2/)



Counter-factual scenarios

200 - 200 -
a

with travel restrictions without travel restrictions

c C

150- 2 150- 2

S S

o ]

[$] [$]

Q (0]

© ©

) @ )

c C C
% K] % contact

§ E g § g rates(%)

S 100- o 3 100- o 40

N 1 z
2 = S 2 = 50

© ) ®© 3] )
© i = © e — 60
— 70
80

50- ‘\ 50 -
. | ) °
\\ o1 ©
. \\\ N\ . =
‘.o - (X ]
. N s
0 n" ﬁ 0 "d
March 18 May 4 June 25 March 18 May 4 June 25
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Public health communication

Simple models are valuable as “stylized facts” for communication to non-modellers

Restrictions enacted on day 7 Restrictions enacted on day 14
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Hurford and Watmough. 2021. Don’t wait, re-escalate: delayed action results in longer duration of COVID-19 measures. MedRxiv



Public health communication

Omicron (less severe, more transmissible) was
forecast to place an extreme burden on the
healthcare system

Flatten the curve

CoVaRR-Net Pillar 6 (Computational Biology and
Modelling)!

Without )
Protective Healthcare system capacity

Executive summary: The current epidemiological, experimental, and

' : computational evidence to date points to a clear growth advantage of the
With Protective Omicron variant of SARS-CoV-2. Canada should therefore be prepared for
Measures another large pandemic wave within the next month. Even if Omicron disease
severity remains the same, or even less severe than previous variants (due to
. . . viral changes and/or increased immunity), the exponential growth that is
Time since first case forecast will result in a large number of cases in a very short period of time,

\dapted from CDC / The Economist placing an extreme burden on the medical care system.

Measures



Quantities to inform decisions
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2. Mechanistic and statistical models

e Definitions

e Mechanistic and statistical models have different roles in
decision support



2. Mechanistic and statistical models

Mechanistic model (epidemiology):

* A mathematical or computer simulation model that describes the processes of
infectious disease spread. For example, transmission, recovery, and control
measures.

« Types: mathematical compartmental models or agent-based models
 Distinct from statistical models in:

- Emphasizing biological realism in describing processes (rather than
variables and prediction)

- That many parameters are independently estimated

« However, mechanistic and statistical (phenomenological) models exist on a
continuum

\ V1 O R &
UNIVERSITY



Mechanistic models have independently estimated parameters

COVID-19 Epidemiological and Modelling Parameters Report - April 15th, 2020

Current to Daily Scan of April 13th, 2020 (citations added since report of April 8th marked in blue text; citations with updated values since report of April 8th marked in red text)

Notes of Caution: !
19. These works, if
evolve beyond the
have been reviewe
This report is not at

References within this report are taken from the Daily Scan of COVID-19 Scientific Publications (contact: lisa.waddell@canada.ca)
> Foci included in data extraction: Epidemiological; Clinical Data; and Modelling/Prediction
> Data extracted by Public Health Risk Sciences Division | NML | PHAC

>> Inquiries related to the enclosed tables are to be directed to ainsley.otten@canada.ca

Interpret With Caution (IWC) - noted in the table to indicate data is extracted and the researcher has assumed it is a reasonable proxy of the parameter at this time.

Par Units Description Cau
The basic reproduction number (R,) is defined as the average number of secondary cases caused by a single
Basic Reproduction Number, R_* - ) o p' . ) R) . . € v Y ¢
infectious individual in a totally susceptible population.
Case Number Doubling Time days |Time it takes for the number of cases to double.
Trai
Case Fatality Rate (CFR) % Number of deaths divided by the number of cases for a certain period of time. be (
The
- Serial interval describes the duration of time between the onset of symptoms in a primary case and the onset of
Serial interval* days X i )
symptoms in a secondary case infected by the primary case.
. . The incubation period represents the time period between the occurrence of infection (or transmission) and the onset
Incubation period* days .
of disease symptoms.
Latent period* days |The latent period is definied as the period of time between the occurrence of infection and the onset of infectiousness
Infectious Period days |The time during which an infected person can transmit an infectious agent to another person. May also be referred td ";tn
extt
. . . . Proportion of cases in which the infected individual does not and will not exhibit symptoms, but are capable of Ma
Proportion asymptomatic but infective* % . . Val
infecting others.
ass!
Proportion Hospitalized % Proportion of cases admitted to hospital divided by total number of cases Par.
Definitions sourced/amended from:
* - Moghadas, S. and Milwid, R. Glossary of Terms for Infectious Disease Modelling. National Collaborating Centre for Infectious Diseases. 2016. Available at: https://nccid.ca/publicati g y-terms-infectious-disease-moc

m




Mechanistic models have independently estimated parameters

COVID-19 Epidemiological and Modelling Parameters Report - April 15th, 2020

Current to Daily Scan of April 13th, 2020 (citations added since report of April 8th marked in blue text; citations with updated values since report of April 8th marked in red text)

Period (days)
Author Title MLV Plausible Range N Population Location
Chen, L, Lou, J., Bai, Y., etal COVID-19 Disease With Positive Fecal and N 6 1 Clinically Confirmed (fecal sample +) Wuhan
Fan, C., Lei, D., Fang, C., etal Perinatal Transmission of COVID-19 Associe 7 Casel Two confirmed cases during third trimester of pregnancy Wuhan
Liang, J. & Yuan, H. Theimpacts of diagnostic capability and pre 557 2,67 - 7.95(95%Cl) confirmed cases Wuhan
Sun, D., Li,H., Lu, X.X,, etal Clinical features of severe pediatric patients 5 - 10 4 Confirmed severe pediatric cases (family cluster and single nosocomial cas Wuhan
Zhang, B., Zhou, X., Qiu, Y., et Clinical characteristics of 82 death cases wit 7 5 - 10 7 Hospitalized confirmed cases Wuhan
Zhang, |, wan, k., chen, j., et : When will the battle against novel coronavir 3 (modelled) confirmed cases Wuhan
Lin, Y., Ji, C,, Weng, W., et al idemiological and Clinical CF istics ¢ 7 5 - 10 124 Confirmed and suspected elderly outpatient cases Wuhan
Lin, Y., Ji,C, Weng, W., et al Epidemiological and Clinical Characteristics ¢ 7 5 - 10 60 Confirmed and suspected elderly outpatient cases, male Wuhan
Lin, Y., Ji, C,, Weng, W., et al idemiological and Clinical Ck istics ¢ 7 475 - 9 64 Confirmed and suspected elderly outpatient cases, female Wuhan
Li,Q.;Guan,X.;Wu,P.;Wang,X.; Early Transmission Dynamics in Wuhan, Chil 5.2 4.1 - 7.0(95%Cl) 10 first 425 confirmed cases in Wuhan Wuhan
Xie, M., Tian, J., Hun, M., et a Analysis of Epidemiological and Clinical Char 6.78 9 Confirmed children cases Wuhan
lJiang, X., Rayner, S. & Luo, M Does SARS-CoV-2 has a longer incubation p: 4.9 4.4 - 5.5 (95%Cl) 50 Confirmed cases Wuhan
Bao, H., Fang, Y., Lai, Q., et al Comprehensive Comparisons to Demonstra 5 4 - 7.75(IQR) 101 Confirmed hospitalized cases, All patients Wuhan
Bao, H., Fang, Y., Lai, Q., et al Comprehensive Comparisons to Demonstra 4 3.25 5.25 (IQR) 12 Confirmed hospitalized cases, Severe cases Wuhan
Bao, H., Fang, Y., Lai, Q., et al Comprehensive Comparisons to Demonstra 5 4 7.75 (IQR) 89 Confirmed hospitalized cases, Mild cases Wuhan
Lytras, T., P iotak lo: Estimating the ascertai rate of SARS-Ci 438 434 - 4.41(95%Cl) 49948 confirmed cases Wuhan
Zhou, F.,, Yu, X., Tong, X., et al Clinical features and outcomes of 197 adult 6.14 (SD9.27) 283 confirmed hospitalized cases who were discharged from hospital Hubei
Ai,J., Chen, )., Wang, Y., et al The cross-sectional study of hospitalized co 8.09 (SD+4.99) 1- 20 44 Hospitalized confirmed cases Hubei
Linton, N.M., Kobayashi, T, ) Incubation Period and Other Epidemiologicz 5 42 - 6.0(95%Cl) 52 Cases diagnosed outside of Wuhan excluding Wuhan residents China (except Wuhan
Linton, N.M., Kobayashi, T., ) Incubation Period and Other Epidemiologicz 5.6 5 - 6.3(95%Cl) 158 Cases diagnosed outside of Wuhan including Wuhan residents China (except Wuhan
Han, H. Estimate the incubation period of coronaviri 5.84 (SD £2.93) 59 confirmed, chain-of-infection China (except Hubei)
Han, H. Estimate the incubation period of coronaviri 6.73 (SD £3.20) 32 confirmed, chain-of-infection, >=40 years old China (except Hubei)
Han, H. Estimate the incubation period of coronaviri 4.84 (SD £2.28) 25 confirmed, chain-of-infection, <40 years old China (except Hubei)
Miao, C., Zhuang, J., Jin, M., ¢ A comparative multi-centre study on the clir 7 3-9 62 Confirmed and suspect cases (incubation period based on confirmed case China (except Hubei)
Sanche, S., Lin, Y.T., Xu, C., et High Contagiousness and Rapid Spread of Si 4.2 35 - 5.1(95%Cl) 24 casereports publicly available case reports, 140 China (except Hubei,
Leung, C. The difference in the incubation period of 21 1.8 1-27 175 Confirmed case in travelers to Hubei China (excluding Hub
Leung, C. The difference in the incubation period of 21 7.2 6.1 - 84 175 Confirmed case in non-travelers to Hubei China (excluding Hub
Lauer,Stephen A.;Grantz,Kyr: The incubation period of 2019-nCoV from ¢ 5.2 44 - 6.0(95%Cl) 101 Confirmed cases China (except Hubei)
Li, M., Chen, P., Yuan, Q,, et z Transmission characteristics of the COVID-1 7.2 (SD £4.11) (modelled) Confirmed cases China (except Hubei)
Sanche,Steven;Lin,Yen Ting;X The Novel Coronavirus, 2019-nCoV, is Highl 4.2 35 - 51 140 first case reports in Chinese provinces other than Hubei China
Leung, C. Estimating the distribution of the incubatior 18 1-27 152 Travelers to Hubei and non-travellers China
Leung, C. Estimating the distribution of the incubatior 6.9 55 - 83 152 Non-travellers to Hubei China
Backer,Jantien A.;Klinkenberg The incubation period of 2019-nCoV infecti 6.4 56 - 7.9(95%Cl) 88 Travellers from Wuhan with confirmed COVID-19 China
Guan, W., Liang, W., Zhao, Y., Comorbidity and its impact on 1,590 patien 3.6 0-78 1590 Hospitalized confirmed cases China
Guan, W,, Liang, W., Zhao, Y., Comorbidity and its impact on 1,590 patien 37 0 -8 1191 Hospitalized confirmed cases, patients without comorbities China
Guan, W,, Liang, W., Zhao, Y., Comorbidity and its impact on 1,590 patien 35 0-74 399 Hospitalized confirmed cases, patients with comorbidities China
Liu,Tao;Hu,Jianxi ang,M Ti ission d ics of 2019 novel corot 4.8 (+2.2) 2 - 11 confirmed cases China
Guan,Wei-jie;Ni,Zheng-vi;Hu, Clinical characteristics of 2019 novel coron: 3 0- 24 1099 patients with laboratory-confirmed cases from 552 hospitals China

V] MORIA
UNIVERSITY



Mechanistic modelling for pandemic preparedness

o Support decisions on resource needs for “hypothetical-yet-
plausible” future pandemics

o Ready-to-go methods that can be adapted and used for
long-range forecasting and to explore scenarios to support
public health decisions on the use of interventions

Ogden NH et al. Mathematical modelling for pandemic preparedness in Canada: Leaming from COVID-19. Can m
Commun Dis Rep 2024,50(1 0)345—56 https://doi.ora/10.14745/ccdr.v50i10a03 I & I Public Health VARl O

Agency of Canada



https://doi.org/10.14745/ccdr.v50i10a03

Mechanistic models

PHAC report involving McMasterPandemic

Longer-range forecast shows stronger public health measures will be
required to counter more transmissible variants of concern

12,000
With spread of
10,000 VO_Cs a_nd we
maintain or
increase the
8,000 current number of
people we contact
Reported
cases 6,000 each day
4,000 If VOCs are

*’l*‘ controlled by

[ H reducing the
current number of
people we contact

2,000

0 each day
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Data as of March 24, 2021 The PHAC McMaster forecast is based on current estimates transmission rates fited to reported cases. It assumes VOCs are ntroduced in mid-
v Dec (~1 week prior to first detected case in Canada) at very low prevalence; VOCs (all VOCs known to date) are 50% more transmissible than
Note: Ensemble of output from PHAC-McMaster wild-type; growth rate AND replacement rate are negatively correlated with the strength of public health measures. Proportion of VOC is
. p . obtained by a f calibrating data as well as information on cases that are VOC. Recent changes in
and Simon Fraser University models testing rates are not taken into account in this forecast. SFU methods are fi

Slide by Steve Walker (https://canmod.github.io/macpan2/)
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Hurford and Watmough. 2021. Don’t wait, re-escalate: delayed
action results in longer duration of COVID-19 measures. MedRxiv
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Mechanistic models

McMasterPandemic COVID-19 (Mechanistic) Model

susceptible

asymptomatic

exposed

infection

presymptomatic mild

infection infection

severe

et hospitalized hospitalized

recovered

Slide by Irena Papst/Steve Walker (https://canmod.github.io/macpan2/)

COVID-19 model
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Hurford and Watmough. 2021. Don’t wait, re-escalate: delayed
action results in longer duration of COVID-19 measures. MedRxiv
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Mechanistic and statistical models have different roles

Fast results Realistic Few cases Insight Reference
assumptions

Agent-based No Yes Yes A little Adams 2020

model

Stochastic model Depends Depends Yes Moderate Bertozzi et al. 2020

Compartmental Yes No No Yes Arino et al. 2006; Adams

model 2020; Saltelli et al;
Bertozzi et al. 2020

Short-term predictions Scenarios

Statistical model Yes No Holmdahl and Buckee
2020

Mechanistic model Maybe Yes Funk and King 2020

Ensemble model Yes Yes Adam 2020; Shea et al

2020




Fast results matters

Feasibility of fitting and sensitivity analysis is a strength of fast models, i.e. ODEs
Consider a model:

e 20 parameters (no means unusual in ecology/epidemiology)
e 10 values of each parameter

e 1 second per model run

Number of required runs: 10%° = 100,000,000,000,000,000,000
Start time: immediately after Big Bang
Current status: 0.4% complete

Argument is from Dietz (2017) Ecological forecasting, p140



ABM vs. compartmental - conflation with model complexity

[~ ' e Importation model*
P ‘\ e Spillover model*
1 e Age-structured

community spread

*only if no

e (Gathering capacity community spread

limits in rural :
communities :
e Pfizer vs. Moderna'

If many processes
that need
individual-level
characteristics are
at this end, then
ABMs




3. Different modelling needs of small jurisdictions

e Small jurisdictions had different epidemiology during COVID-19
e Small jurisdictions may have different best public health responses

e Common pitfalls that affect small jurisdictions modelling



Small jurisdictions had different epidemiology
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Hurford et al. Pandemic modelling for regions implementing an elimination strategy. Joumnal of Theoretical Biology. 2023.



Small jurisdictions had different epidemiology

¢ No cases: with no confirmed cases

e Sporadic cases: with one or more cases, imported or locally detected

e Clusters of cases: experiencing cases, clustered in time, geographic location and/or by
common exposures

e Community transmission: experiencing larger outbreaks of local transmission defined
through an assessment of factors including, but not limited to: large numbers of cases not
linkable to transmission chains; large numbers of cases from sentinel lab surveillance;
and/or multiple unrelated clusters in several areas of the country/territory/area

¢ Pending: transmission classification has not been reported to WHO

Reporting Country/ Territory/Area = Total confirmed Total confirmed Total deaths Total new deaths Transmission Days since last

cases new cases classification' reported case

Hungary 4114 7 576 3 Community transmission 0
Kyrgyzstan 3954 228 43 1 Clusters of cases 0
Bosnia and Herzegovina 3675 88 172 1 Community transmission 0
Greece 3310 8 190 0 Clusters of cases 0
Croatia 2388 22 107 0 Sporadic cases 0

WHO coronavirus (COVID-19) situational report 157 — June 25 2020



https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200625-covid-19-sitrep-157.pdf

Clustered cases (Stage llI: Stuttering transmission)

Introduction
(from reservoir)
Transmission in

human population T T |t
@) @) @) [
T
@) @) [
T T
Infections by: T
O introduced strain
(Ro<1) T T
@® cvolved strain
(Rp>1)
Emergence

Antia et al. 2003. The role of evolution in the emergence of infectious disease; Lloyd-Smith et al. 2009. Epidemic dynamics at the human-
animal interface.



Small jurisdictions may have different best PH responses

2021 Updated WHO recommendations
Risk-assessment approach to the implementation of risk mitigation measures for intemational travel

National authorities should conduct thorough, systematic and regular risk assessments as new information emerges to inform the
introduction, adjustment and discontinuation of risk mitigation measures in the context of international travel.

For international inbound travel, the following factors should be considered:
e the local epidemiology (8) in departure and destination countries

* the volume of travellers between countries and existing bilateral and multilateral agreements between countries to
facilitate free movement

¢ public health and health services performance and capacity (7) to detect and care for cases and their contacts in the

destination country, including among vulnerable travellers, such as refugees, migrants and temporary or seasonal workers
whose livelihoods largely depend on cross-border activities

¢ public health and social measures implemented to control the spread of COVID-19 in departure and destination countries
and available evidence on adherence and effectiveness of such measures in reducing transmission

* contextual factors, including economic impact, human rights and feasibility of applying measures.

Technical considerations for implementing a risk-based approach to international travel in the context of COVID-19 2 July 2021



https://iris.who.int/bitstream/handle/10665/342212/WHO-019-nCoV-Risk-based-international-travel-2021.1-eng.pdf?sequence=1

Small jurisdictions may have different best PH responses

_ Exclusion strategy i
Maximum action to exclude disease eg, some Pacific Island countries and territories

!

Elimination strategy
Maximum action to exclude disease and eliminate community -
transmission eg, mainland China, Taiwan, New Zealand

.............................................. 1

Suppression strategy
Action increased in stepwise and targeted manner to substantial lower case -
numbers and outbreaks eg, most countries in Europe and North America

!

Mitigation strategy " :
Action to taken to ‘flatten the peak’ to avoid overwhelming health A m!tlgatlon Str.ateg.y can be
services and protect the most vulnerable eg, Sweden (at least initially) continuous or circuit breaker
No substantive strategy

Largely uncontrolled pandemic wave eg, some lower income countries

Baker et al. 2020. Elimination could be the optimal response strategy for covid-19 and other emerging pandemic diseases



Small jurisdictions may have different best PH responses
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Small jurisdictions may have different best PH responses

Martignoni et al. Is SARS-CoV-2 elimination or mitigation best? Regional and disease characteristics determine the recommended strategy.

Should an elimination strategy be implemented?
I$ it necessary to ensure Is it epidemiologically . X & cost eftective?
health care provision? feasible? A —
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Martignoni et al. 2024. Is SARS-CoV-2 elimination or mitigation best? Regional and disease characteristics determine the best strategy



Common pitfalls that affect small jurisdiction modelling

o Pitfall 1: Atto-fox
o Pitfall 2: Island of Transmithica

« How we addressed these problems
« The problem of over-generalizing results from large

jurisdictions



Murray et al. 1986: rabies would re-appear in south England
6 years later

* Main conclusions of Murray
et al. 1986 are based on a
technical error: the atto-fox
(Mollison 1991)

» Aside from the error, Murray
et al. 1986 is quite inspiring

Murray et al. 1986. On the spatial spread of rabies among foxes



Continuous dependent variables cause the atto-fox problem

e “As to the second wave, close inspection shows that the explanation
lies not so much in the determinism of the model as in its modeling of
the population as continuous rather than discrete and its associated
inability to let population variables reach the value zero”

e “.. The density of infected [foxes] ... declines to a minimum of around
one atto-fox (10-18 of a fox) per square kilometer. The model then
allows this atto-fox to start the second wave as soon as the
susceptible population has regrown sufficiently.”

Mollison, 1991. Dependence of epidemic and population velocities on basic parameters



Pitfall 1: atto-fox

e Concerns models where population variables never reach zero, enabling
rebounds from very small values (i.e., 10-18)

e Affects modelling concerning:
o Public health measures that are released
o Elimination strategies, and travel measures
o Transmission dynamics involving clusters of cases

e Solutions
o End the outbreak when a small value is reached (Hansen and Day 2011)
o Modelling outbreak duration and time between outbreaks (Martignoni et al. 2024)
o Importation-community spread switch model

Hansen and Day. 2011. Optimal control of epidemics with limited resources; Martignoni et al. 2024. Is SARS-CoV-2
elimination or mitigation best? Regional and disease characteristics determine the best strategy



Pitfall 2: Island of Transmithica

On the island of Transmithaca, one million people lived in complete isolation from the rest of
the world. A virus had ravaged the outside world, and, in the process, all viral parameters had
become known with perfect precision. As Transmithaca slowly opened up for outside visitors,
the inhabitants knew everything about the virus — except when it would arrive. The leaders of
Transmithaca asked their epidemiologists to estimate how the disease would impact society.
The epidemiologists simulated a number of scenarios, all with perfect choices of parameters,
but different starting dates for the epidemic. Their simulations produced an ensemble of
epidemic curves and, thinking that the individual simulated epidemic trajectories might
clutter the picture, they presented the fixed-time summary statistics shown in grey and black
in Fig. 1. Thus, the islanders prepared for an outbreak that might infect between 2,000 and
3,000 individuals at peak impact. As we can inspect, however, from the ensemble of time-
displaced curves, the actual peak impact in every single case is more than 4,000 cases.

Juul et al. 2021 Fixed-time descriptive statistics underestimate extremes of epidemic curve ensembles



Pitfall 2: Island of Transmithica
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Simulations of the outbreak on the island Transmithaca (created using a deterministic compartmental model). Grey curves show individual simulations.
Median and confidence intervals calculated using fixed-time statistics are defined in the legend. Simulations are identical except for the date on which the

outbreak starts. The fixed-time descriptive statistics do not capture peak numbers of infections.

Juul et al. 2021. Fixed-time descriptive statistics underestimate extremes of epidemic curve ensembles



Pitfall 2: Island of Transmithica

e Concerns uncertain start dates

e Affects:

o Deterministic, stochastic, and agent-based models;

o Regions that have no community outbreaks;

o Models linking importation models to community spread models;

o Ensemble forecasts of hospitalizations during the COVID-19 pandemic in the Netherlands
(Juul et al. 2021)

e Solutions (see Juul et al. 2021 for details):

(1) curve-based summary statistics
(2) summarizing estimated likelihoods of specific scenarios of interest



How we addressed these problems
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Model fitting: importation-community spread switch model

e Data: incidence of travel-related cases (dark shading) and community
cases (light shading)

e Include a model variable that is travelers in isolation

e 10 days before a reported community outbreak, briefly allow the rate that
an isolating traveler infects a susceptible community members to be

positive (vertical dashed line)

o All other times this rate is O

e \When infection incidence is less than a small threshold, set to 0.

36



Features of the importation-community spread switch model

Overcomes:
e Pitfall 1 (atto-fox) by setting low incidence to 0
e Pitfall 2 (Island of Transmithica) by fixing the community outbreak start

dates (vertical dashed lines). Start date is not treated as uncertain.



Scenario modelling, i.e. following from the switch model

simulation 22 Multiple realizations
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Determining when the outbreaks start for the scenario
modelling
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Determining when the outbreaks start for the scenario

modelling

Importations to NL

Extend this idea by
using the same method
for a more detailed
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Hurford et al. 2023. Pandemic modelling for regions implementing an elimination strategy



Fixes: Modelling outbreak duration and time between outbreaks
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Could be modelled as a branching process or an agent-based model, but atto-fox
problem is “not so much about the determinism”.

Martignoni et al. 2024. Is SARS-CoV-2 elimination or mitigation best? Regional and disease characteristics determine the best
strategy



Fixes: Modelling outbreak duration and time between outbreaks
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Martignoni et al. 2024. Is SARS-CoV-2 elimination or mitigation best? Regional and disease characteristics
determine the best strategy



Problem: Over-generalization from large jurisdictions

Concerns using community spreads models (i.e., SIR) and resulting
recommendations in regions where community spread is not occurring

Affects:
e Regions without community spread
e Underserved and under-resourced jurisdictions

Solutions:

e Do the modelling correctly

e Multijurisdictional representation

e Serving and resourcing all jurisdictions

e Canadian small jurisdictions modelling group (CanSJ)



Small jurisdictions are under-resourced
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Small jurisdictions are under-resourced

“the need for additional public health physicians is most acute in rural
areas, the Atlantic provinces, the territories and areas served by Health
Canada’s First Nations and Inuit Health Branch".

--- 2003 report by the National Advisory Committee on SARS and Public Health



Small jurisdictions can be overlooked

 American Samoa was one of the few places to report no mortalities from the
1918 influenza pandemic

« Maritime quarantine, including several day wait period before disembarking
maintained until at least 1920

* Outbreak in 1926 resulted in clinical infections in 25% of the population;

* 1/1000 residents died, ~200 lower than overall mortality in nearby Western
Samoa

Shanks and Bundage. 2012. Pacific islands which escaped the 1918-1919 influenza pandemic and their subsequent
mortality experiences



Canadian Small Jurisdictions Working Group (CanSJ







Reasons for fire stations
e Most of us experienced the COVID-19 public health emergency in primarily
one place. Anecdotally, you need some local expertise or critical errors are
likely (no slides on this — just recounting my observation)

e Regional characteristics determine the best public health response

e Small jurisdictions are under-resourced and their needs can be overlooked, or
falsely assumed, in bigger conversations



Reasons for space stations

e Under-resourced jurisdictions need access to the best experts too!

Changing contact patterns in Newfoundland and
Labrador, Canada in response to public health
measures during the COVID-19 pandemic

Renny Doig!*, Amy Hurford?3*, Liangliang Wang!, Caroline Colijn*

Department of Statistics and Actuarial Science, Simon Fraser University, 8888
University Drive, Burnaby, BC, Canada



Reasons for space stations

macpan2 1.16.7 Authors

Steve Walker. Maintainer, author.

macpan2

Weiguang Guan. Author.

Jen Freeman. Author.

McMasterPandemic was developed to provide forecasts and insights
to Canadian public health agencies throughout the COVID-19 pan-

Ben Bolker. Author.

demic. Much was learned about developing general purpose compart- Darren Flynn-Primrose. Author.
mental modelling software during this experience, but the pressure to

deliver regular forecasts made it difficult to focus on the software it- Irena Papst. Contributor.

self. The goal of this macpan2 project is to re-imagine

McMasterPandemic , building it from the ground up with architectural Michael Li. Contributor.

and technological decisions that address the many lessons that we

learned from COVID-19 about software. Kevin Zhao. Contributor.

The Public Health Risk Sciences Division at the Public Health Agency
of Canada uses macpan2 (for example, here).




Our current projects using macpan?2

Estimating the undiagnosed fraction of Hepatitis C in NL
Collaborators: Laura Bruce and Peter Daley (Memorial U)

Estimating human infections of avian influenza

Collaborators: Josh Mack, Joseph Baafi, Andrew Lang, Kathryn Hargan

(Memorial U), Randy Green (Miauwpkek FN), ECCC, Govt of Nunatsiavut,
Nunatukavut CC

Building a general modelling framework for pandemic and non-
pandemic SARS-CoV-2 and Avian influenza, malaria, Arctic

rabies, and Lyme disease
Collaborators: Michael Li (PHAC) and Memorial U




Pandemic preparedness needs modelling preparedness

1. There was high demand for modelling during the pandemic
2. Mechanistic and statistical models have different roles in pandemic decision support

3. The modelling needs of small jurisdictions can be different than the modelling needs of

large jurisdictions.

4. Building capacity in mathematical biology and statistics in Atlantic Canada
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